Sample Exam 4
Short Answer

1. A metal bar of length 1 m travels through a perpendicular B field with magnitude 1 T. How
fast would the bar need to go to develop an emf of 1 V across its ends.
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2. A uniform magnetic field passes through a square loop of wire with 5 turns. The loop has side
0.1 m and is oriented at 30 degrees with respect to the field. What is the flux through the wire?
If the field drops from 5 T to 4 T in 1 minute, what emf will develop and in what direction will it
point.
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3. A cylindrical solenoid is 0.5 m long and has 50 turns per cm. What field is present if 1 amp
flows through the wire? (Hint: Calculate using Ampere’s Law). What is the energy density?
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4. Compute the inductance of the solenoid in SA 3.
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5. A 100mH inductor has a current given by i=2t2+3t +4. What voltage develops across the
inductor at t=3 sec.
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6. Write Maxwell’s equations and briefly explain each equation.
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(a) Gauss’ Law for E: The total flux of E through an enclosed surface is proportional to the

charge enclosed
(b) A changing magnetic flux induces an electric field.

(c) Gauss’ Law for B: There is no free magnetic charge.

(d) A magnetic field is produced by either a current or a changing electric flux.

7. Describe the underdamped, critically damped, and overdamped solutions of the RLC circuit.
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8. An emf with frequency 60 Hz and V,, =300 drives a circuit with resistance 100 Ohms and
inductance 0.5 H.  What are the RMS voltage, the inductive reactance X, , the impedance Z, and
the maximum and RMS current.

Vs =2 =212.1V
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X, =oL=2rfL=2r-60Hz-05H =607 2=188.5 €

Z=~/R*+(X, - X.)* =4/(100Q)? + (188.5Q-0)* =213.4 Q
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10. An incoming radio wave has a frequency f of 780 Khz. If the inductor in an LC circuit is
100mH, what should the capacitance be set to to tune this radio to this frequency.



f =780 x10° Hz
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10. Derive the expression for the magnitude of the magnetic field at a distance r from a long
straight wire.

We use Ampere’s Law

$B-dF = p,i
B-Qrr)=p,i

B= My
2rr

11. A current of 10A is distributed uniformly across a beam with a radius a. Find the magnetic
field at a distance r from the center of the beam. Consider both r<a and r>a.
We can now use Ampere’s Law (J is the current density: current /area)

$B-dF =p,i
For r<a
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B-(27z:r)=u0J7tr2
B:qur
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For r>=a
$B-dF = p,i
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B u,J a’
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Problems.

1. A magnetic field is given by

B=B,coswt

Note that the magnitude of B changes, but not its direction. A circular loop is placed in this field
and oriented at an angle 0
a. What is the magnetic flux through the loop?

¢ = BAcosO

b. What emf is induced? Draw a picture to indicate the direction of the induced current

__do,
dt

dB
=—mr’—cosf

dt
=—nr’(-wB,sinwt)cos
= r’wB,sinwtcosH

The emf oscillates back and forth! The direction changes back and forth, always flowing to
produce a B to oppose the change.

c. What angle leads to the maximum induced emf?

0 = Oleads to maximum change in flux

d. Assume that (is now 0. What electric field is present at the radius of the wire?

B
EQnr)=-nr’ a8
dt

E:—g-(—wBosina)t)

Ezg-(coB(J sinmt)

2. Acircular parallel plate capacitor with radius R and separation d in an RC circuit discharges
via the equation
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a. What is the electric field as a function of time?
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b. What is the displacement current at a/2 and a?
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c. What is the induced B at at a/2 and a?
gSB -dl =, i,
BQ2ra)=p,i,
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Note: You need to plug in the correct displacement current from part b.

3. Consider an RLC circuit with R=10 Ohms, L = 500 mH and C=1microF.

a. Write the differential equation that describes this circuit by using Kirchoff’s voltage loop rule
What is the natural osc. frequency?
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b. Now consider driving this circuit. What are XLXcs and Z for this circuit? Sketch the

amplitude of the voltage across the capacitor as a function of the frequency.

X, =oL=2nfL
XC:L: 1
oC 2nfC

Z=~(X, - X.) +R*

Take the emf to be 20 for the purpose of plotting a nice curve. Here y is the voltage and x is the
frequency.
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3. A Square loop with side 1 m contains a single turn of wire. It is placed so that the center of
the square is at the origin. Compute the magnetic field at a point (0,0,1m). Take the current to
be 5 Amps and flowing in the counterclockwise direction as viewed from above.
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The field can be computed by finding the z component due to just one of the four segments and
then multiplying by 4. By symmetry, only the z component survives. We begin by computing
the field using Biot-Savart for the right wire shown above. First, write out all the pieces we
need.
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Note that the right wire is at y=1/2. The direction of the current will be given by the order of
integration (from x=+1/2 to x=-1/2).

Now substitute in
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We now pick out just the z component (from i x j)
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Note: Mathematica did the integral! The result for the full loop is 4 x this result.
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4. A circular loop with radius a is centered at the origin. Find the magnetic field at a point
(0,0,z). You may assume a current I in the clockwise direction.

X

We begin by writing 1, the position of a little bit of current. This will allow us to find dl.

~I
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x'I+y' j=acosOi +asinf
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=—asinOi + acos@}'
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dl =(-asinBi + acos0 j)do

Here the angle theta is measured from the x axis, as usual. The primed coordinates are the
coordinates of the wire. Now find the other pieces to plug into the Biot-Savaart law...
F=(0-x)i+0-y)j+(z-00k
=—acosOi — asin9}'+ 2k
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and substitute
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Note that the directions match what we would expect from the right hand rule...



