
Chapter 23 Problems

23.1  The square surface shown in Fig 23-26 measures 3.2 mm on each side.  It is immersed in a 
uniform electric field with magnitude E = 1800 N/C.  The field lines make an angle of 35 degrees 
with a normal to the surface as shown.  Take the normal to be directed “outward” as though the 
surface were one face of a box.   Calculate the electric flux through the surface.   

The flux through this surface is

� 

ϕ = E Acosθ
θ =180°− 35°

ϕ = (1800N /C ) ⋅ (.0032m)2 ⋅cos(180°− 35°)
= −1.51×10−2 Nm2 /C

Note that the angle is 180-35.   This makes the flux negative--which means the flow is into the 
box.  A net flow into a closed surface is taken to be negative.

23.2.  The cube in Fig 23-27 has edge length of 1.4 m and is oriented as shown in a region of 
uniform electric field.  Find the electric flux through the right face if the field (in N/C) is given by 
(a) 

� 

6.00 ˆ i , (b) 

� 

−2.00 ˆ j  and (c) 

� 

−3.00 ˆ i + 4.00 ˆ k .  

The area vector for the right face is

  

� 

 
A = (1.4m)2 ˆ j 

We can now compute flux.

(a)     

� 

 
E ⋅
 
A = 6.00 ˆ i ⋅ (1.4m)2 ˆ j = 0

(b)   

� 

 
E ⋅
 
A = −2.00 ˆ j ⋅ (1.4m)2 ˆ j = −2.00⋅ (1.4m)2 = −3.92Nm2 / C

(c)  

� 

 
E ⋅
 
A = (−3.00 ˆ i + 4.00 ˆ k ) ⋅ (1.4m)2 ˆ j = 0

(d)  The total flux through the cube is zero.   A uniform field is present--every field line that 
enters onside of the cube leaves the other.

23.3  The cube in Fig 24-26 has edge length of 1.4 m and is oriented as shown in a region of 
uniform electric field.  Find the electric flux through the right face if the field (in N/C) is given by 
(a) 

� 

6.00 ˆ i , (b) 

� 

−2.00 ˆ j  and (c) 

� 

−3.00ˆ i + 4.00 ˆ k .  



The area vector for the right face is

  

� 

 
A = (1.4m)2 ˆ j 

We can now compute flux.

(a)     

� 

 
E ⋅
 
A = 6.00 ˆ i ⋅ (1.4m) 2 ˆ j = 0

(b)   

� 

 
E ⋅
 
A = −2.00 ˆ j ⋅ (1.4m) 2 ˆ j = −2.00⋅ (1.4m)2 = −3.92Nm 2 / C

(c)   

� 

 
E ⋅
 
A = (−3.00ˆ i + 4.00 ˆ k ) ⋅ (1.4m)2 ˆ j = 0

(d)  The total flux through the cube is zero.   A uniform field is present--every field line that 
enters onside of the cube leaves the other.

23.5  A point charge of 1.8nC  is at the center of a cubical Gaussian surface  55cm on edge.  
What is the net electric flux through the surface?

The net electric flux through a closed surface (like the cube that we have here) is given by

{ = E# $ dA = f0
qenc

= f0
1.8 # 10-6C

= 2.03 # 105 Nm2 /C

23.7  In Fig. 23-29, a proton is a distance d/2 directly above the center of a square of side d.   
What is the magnitude of the electric flux  through the square?  (Hint:  Think of the square as one 
face of a cube with edge d).

If we think of the charge as enclosed by a cube with the charge at the center, we can use Gauss’ 
Law to find the flux through the cube

� 

ϕcube =
qenc
ε0

= 1.81×10−8Cm2

ϕside =
1
6
ϕcube = 3.01×10−9 N

C
m2

23.17  Space vehicles traveling through Earth’s radiation belt can intercept a significant number 
of electrons.  The resulting charge buildup can damage electronic components and disrupt 
operations.   Suppose a spherical metallic satellite 1.3 m in diameters accumulates 

� 

2.4µC in one 
orbital revolution.  (a)  Find the resulting surface charge density.  (b)  Calculate the magnitude of 
the electric field just outside the surface of the satellite due to the surface charge.



� 

σ =
2.4 ×10−6C
4π ⋅ (1.3 / 2 m)2

= 4.52 ×10−7C /m2

E =
4rf0 (1 . 3m/2)

2

2 . 4 # 10-6C
= 5.1 # 104N /C

23.19  A uniformly charged conducting sphere of 1.2m diameter has a surface charge density of 

� 

8.1×10−6C /m 2  (a)  Find the net charge on the sphere.  What is the total electric flux leaving the 
surface of the sphere.

(a)  

� 

q = σ ⋅ 4π r2 = 3.66 ×10−5C

(b) 

� 

ϕ =
qenc
ε0

=
3.66 ×10−5

8.85 ×10−12
Nm2

C
= 4.14 ×106 Nm

2

C

23.22   Figure 23-36 shows a section of a long, thin-walled metal tube of radius R = 3.00cm 
with a charge per unit length m = 2.00 # 10-8C/m .  What is the magnitude of the electric field at 
radial distance (a) r = R/2.00 and (b) r = 2.00R.  (c) Graph E versus r for the range r = 0  to 
r = 2.00R.

We can solve for the field using Gauss’s law.   We enclose with a cylindrical Gaussian surface.

E $ dA# = f0
qenc

E $ dA
ends
# + E $ dA

curve
# = f0

qenc

0 + E $ dA
curve
# = f0

qenc

E dA
curve
# = f0

qenc

E dA
curve
# = f0

qenc

E $ 2r r L = f0
mnet L

E = 2rf0r
mnet

Now we need to carefully compute the net charge/length enclosed.   For r = R/2.00, no charge 
is enclosed, so mnet = 0 and E = 0.

For r = 2.00R, mnet = m and E = 2rf0r
m .

The field is zero from 0 to R and then falls as 1/r from R to 2R.



23.23  An infinite line of charge produces a field of magnitude of 4.5 # 104N/C  at a distance of 
2.0m.   Calculate the linear charge density.

We can solve for the field using Gauss’s law.   We enclose with a cylindrical Gaussian surface.

E $ dA# = f0
qenc

E $ dA
ends
# + E $ dA

curve
# = f0

qenc

0 + E $ dA
curve
# = f0

qenc

E dA
curve
# = f0

qenc

E dA
curve
# = f0

qenc

E $ 2r r L = f0
mnet L

E = 2rf0r
mnet

mnet = 2rf0rE = 5.0 # 10-6N/C

23.27  Figure 23-37  is a section of a conduction rod of radius R1 = 1.30mm  and length 
L = 11.0m  inside a thin-walled coaxial conducting cylindrical shell of radius R2 = 10.0R1  and 

the (same) length L .  The net charge on the rod is Q1 = +3.40 ×10−12C ; that on the shell is 
Q2 = −2Q1  What are (a) the magnitude E and (b) direction (radially inward or outward) of 
electric field at a radial distance r = 2R2 ?  What are (c) E and (d) the direction at r = 5R1  What 
is the charge on the (e)interior and (f) exterior surface of the shell.

For parts (a) and (b), we consider the field outside the outer shell.   If we write out Gauss’ law for 
a surface that is outside both the rod and shell



  

� 

 
E ⋅ d
 
A ∫ = qenc

ε0
 
E ⋅ d
 
A 

ends∫ +
 
E ⋅ d
 
A 

curve∫ = qenc

ε0

0 +
 
E ⋅ d
 
A 

curve∫ = qenc

ε0

E dA
curve∫ = qenc

ε0

E dA
curve∫ = qenc

ε0

E ⋅ 2π r L = λnet L
ε0

E = λnet

2π ε0r

The net charge per unit length is the net charge divided by the length.   The net charge inside the 
enclosing Gaussian surface is the total charge on the rod and the shell.

qnet = Q1 +Q2 = −3.40 ×10−12C

λnet =
qnet
L

=
−3.40 ×10−12C

11.0m
= −3.09 ×10−13C / m

r = 2.00R2 = 0.026m

E =
λnet
2π ε0r

=
−3.09 ×10−13C / m
2π ε0 ⋅0.026m

= −0.214N /C

The minus sign indicates that the field points inward.

For parts c and d, we choose a Gaussian surface in the gap since r = 5R1  is in the gap.   The 
Gauss’ Law calculation is exactly the same, except the charge per unit length enclosed will be 
different since we only enclose the rod.



  

� 

 
E ⋅ d
 
A ∫ = qenc

ε0
 
E ⋅ d
 
A 

ends∫ +
 
E ⋅ d
 
A 

curve∫ = qenc

ε0

0 +
 
E ⋅ d
 
A 

curve∫ = qenc

ε0

E dA
curve∫ = qenc

ε0

E dA
curve∫ = qenc

ε0

E ⋅ 2π r L = λnet L
ε0

E = λnet

2π ε0r

Now we use the charge on the rod only.

qnet = Q1 = 3.40 ×10
−12C

λnet =
qnet
L

=
3.40 ×10−12C
11.0m

= 3.09 ×10−13C / m

r = 5.00R1 = 0.0065m

E =
λnet
2π ε0r

=
3.09 ×10−13C / m
2π ε0 ⋅0.0065m

= 0.855N /C

The field points radially outward.

To find the charge on the inner surface of the shell, we choose a Gaussian Surface inside the 
shell.  (in the conductor itself).  If we choose a Gaussian Surface inside the conducting shell, we 
know that the E field and flux must be zero.   If we solve for the charge  on the inner surface of 
the shell, we find that it must be equal and opposite to the charge on the rod, since the charge 
enclosed must be zero.



  

� 

 
E ⋅ d
 
A ∫ =

qenc

ε0

0 =
qenc

ε0

0 =
qinner + qrod

ε0
qinner = −qrod = −Q1

= −3.40 ×10−12C
If −Q1  is on the inner surface of the shell andQ2 = −2Q1 is on the total shell, then 
−Q1 = −3.4 ×10−12C  must be on the outer surface of the shell.

23.36  A large, flat, nonconducting surface has a uniform charge density 

� 

σ .   A small circular 
hole of radius R has been cut in the middle of the surface as shown in Fig. 23-42.   Ignore 
fringing of the field lines around all edges and calculate the electric field at a point P a distance z 
from the center of the hole along its axis.   (Hint:  See Eq. 22-26 and use superposition)

Superposition is the key to this problem   Superposition is the principle that allows you to 
construct the field due to a number of charge distributions by adding the fields from each 
distribution together as vectors.

In this problem, the field at the point p will be the field due to an infinite plane - the field due to a 
disk.   We think of this distribution as a plain and then we subtract the hole.

� 

E = E plane − Edisk

=
σ
2ε0

−
σ
2ε0

1− z
z 2 + R2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

= σ
2ε0

z
z2 + R2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

23.41  In Fig. 23-45, a small nonconducting ball of mass 

� 

m =1mg  and charge 

� 

q = 2 ×10−8C  
(distributed uniformly through its volume hangs from an insulating thread that makes an angle 

� 

θ = 30° with a vertical uniformly charged nonconducting sheet (shown in cross section).   
Considering the gravitational force on the ball and assuming that the sheet extends far vertically 
and into and out of the page, calculate the surface charge density 

� 

σ  of the sheet.



We begin by drawing a free body diagram.   We know that the forces must add to zero.

T

mg

FE

y

x

θ

T

FE

mg

We solve for and eliminate the tension between the equations to find the electric force.   We can 
then use the expression for the electric field for an infinite plane to solve for the charge density.

� 

x − direction
0 = FE −T sinθ

        

� 

y − direction
0 = Tcosθ −mg

          

� 

T =
mg
cosθ

FE = Tsinθ

= mg
cosθ

⋅ sinθ

= mg tanθ

          

� 

FE = mgtanθ

FE = q E = q σ
2ε0

q σ
2ε0

= mgtanθ

σ =
2ε0mg
q

tanθ

= 5.0 ×10−9C /m2

23.50  Figure 23-51 shows a spherical shell with uniform volume charge density 
ρ = 1.84 ×10−9C / m3 , inner radius a = 10.0cm  and outer radius b = 2.00a .  What is the 
magnitude of the electric field at radial distances (a) r = 0 , (b) r = a / 2.0 , (c) r = a , (d) 
r = 1.5a , 
(e) r = b , (f) r = 3.00b

We begin by considering a spherical Gaussian Surface.   For this spherical geometry, the electric 
field is parallel to the dA vector everywhere on the surface, so the dot product becomes a simple 
multiplication because the angle between the E vector and the dA vector is zero everywhere.   
The magnitude of E is the same everywhere by symmetry, so we can pull E out of the 
integration.  We are left with integrating dA over our spherical Gaussian surface.   



 


E ⋅d

A =

qenc
ε0

∫

EdA =
qenc
ε0

∫

E dA =
qenc
ε0

∫

E ⋅ 4π r2 = qenc
ε0

For (a) r = 0 , (b) r = a / 2.0 , and (c) r = a , the charge enclosed is zero so E = 0 .   For d) 
r = 1.5a ,  and (e) r = b , we need to calculate the charge enclosed.

qenc = ρ ⋅Venc = ρ ⋅ 4
3
π r3 − 4

3
π a3⎛

⎝⎜
⎞
⎠⎟

E ⋅ 4π r2 = qenc
ε0

E ⋅ 4π r2 =
ρ ⋅ 4

3
π r3 − 4

3
π a3⎛

⎝⎜
⎞
⎠⎟

ε0

E =
ρ (r3 −a3)
3ε0r

2

=
1.84 ×10−9C / m3(r3 −a3)

3ε0r
2

r = 1.5a = 0.15m
E = 7.32N /C
r = b = 0.20m
E = 12.13N /C

For the last section (f),  we enclose the entire shell so we  use the entire charge on the shell.



qenc = ρ ⋅Venc = ρ ⋅ 4
3
π b3 − 4

3
π a3⎛

⎝⎜
⎞
⎠⎟

E ⋅ 4π r2 = qenc
ε0

E ⋅ 4π r2 =
ρ ⋅ 4

3
π b3 − 4

3
π a3⎛

⎝⎜
⎞
⎠⎟

ε0

E =
ρ (b3 −a3)
3ε0r

2

=
1.84 ×10−9C / m3(b3 −a3)

3ε0r
2

r = 3b = 0.60m
E = 1.35N /C


