Measurement and Tracking of Groundlevel Prompt Photon Showers and Their Connection to Meteorological Parameters

NSD

Christopher G. Fasano and the Monmouth College Lightning Research Group

Overview

- Measure High-Energy Photon spectra coming from the atmosphere at ground level
- Connect those measurements to meteorological data
- Measure the evolution of photon-generating systems as they march across the Midwest.
- Research with Undergraduates—outreach to high school students and teachers.

MC Detector Schematic

Monmouth College Detector Package

Packaging

- NaI crystal exposed, but remaining parts sealed
- Ventilation-small fan circulates air up through base and out ventilation tubes

Monmouth College Detector Package

Packaging

- Water-resistant but ventilated
- Easy to Assemble
- Easy to service
- Compact and easy to transport and deploy
- Electronics in removable base cap

Monmouth College Detector Package

Completed Detector

Typical Deployments

Clear Air Spectrum Example

Rainy Day Spectrum

Clear vs. Rainy Day Spectra Compared

Rainy Day Count Rate

Rise in Count rate

Decay to background over hours.

Characteristic of Uranium Daughter Rainout

Event Detection Techniques

- Count rate
- Distribution of spectra in bins
- Time structure
- Spectra
- Background Subtraction.

COLLEGE[®]

Nov-11-2014 Event--Spectra taken every 10 minutes Counts -10-Nov-14-23.38.06 vs Channel 11,000 Counts -10-Nov-14-23.48.07 vs Channel 00 X-Ray Showers or Bursts Counts -10-Nov-14-23.58.07 vs Channel •0 Counts-11-Nov-2014-00.08.08 vs Channel 0,000 Counts-11-Nov-2014-00.18.08 vs Channel 10,000 Counts-11-Nov-2014-00.28.08 vs Channel Counts-11-Nov-2014-00.38.08 vs Channel Counts-11-Nov-2014-00.48.08 vs Channel Counts-11-Nov-2014-00.58.09 vs Channel 9.000 Counts-11-Nov-2014-01.08.09 vs Channe Counts-11-Nov-2014-01.18.09 vs Channe Counts-11-Nov-2014-01.28.10 vs Channel Counts-11-Nov-2014-01.38.10 vs Channel Counts-11-Nov-2014-01.48.11 vs Channel 8,000 00,0000 Counts-11-Nov-2014-01.58.11 vs Channel 0 0 Counts-11-Nov-2014-02.08.12 vs Channel Counts-11-Nov-2014-02.28.12 vs Channel ... Counts-11-Nov-2014-02.38.12 vs Channel 7,000 • Number of Counts 0000 00 00 ... 00000000000 6,000 000 °0,0 000.00 5,000 000 00 0 0°00°00 0 00 • 0 4,000 0000 3,000 2,000 1,000 0 20 30 40 80 10 50 60 70 90 100 110 120 130 140 150 Channel (Energy) onmou 7/29/13 17 **COLLEGE**[®]

Where did this come from?

- No lightning
- Dramatic Pressure Drop
- Passage of weather front—winter storm
- Prompt Photon Shower

^ ○ ○ + *⊂* ∰ **=**

zoom rent

What can we say about this event:

- There is no "dramatic signal" or photon shower
- A subtle signal may be present, but we need to do background subtraction to dig it out if it's there.
- The pressure drop at our site was not dramatic (~975 mb)
- Rotation in the storm was visible
- Confirmed tornado within approximately 1 mile (EF-2)
- Working on extracting data from other stations (Burlington and Galesburg).

Challenges in Running Detectors

- Corrosion
- No Internet Access at high schools (detectors must be standalone)
- Maintenance—Keeping things running and Weather
 - Field repair
 - Move to a modular model for elements that fail often (RH/Temp, GPS)
 - Depot repair
- A roof is a hostile place—continuing safety protocols
- Lots of Data—Data flow
- Managing a large and disparate group over a large geographic area
- Keeping the high schools students engaged as real participants

Conclusions and Future Work

- We have seen prompt photon showers and they were not connected with lightning but rather with a strong winter storm.
- We have observed a tornadic storm it did not produce an dramatic and easily observable signal.
- We are prepared to see more subtle events via a variety of event detection techniques.
- We are accumulating data and watching evolution of photon producing systems.

Conclusions and Future Work

- More stations to fill the geographic "hole"...and we have ideas on managing over a large area
- Modeling events
- Upgrade existing stations to make data processing easier and faster (RPi 1 to RPi 3)
- Upgrade software to make it more intelligent—change the acquisition timing based on events observed
- Need additional sensors to add to the package (windspeed, rainfall rate, camera)
- Continue work on improving repair, uptime and fighting corrosion

Acknowledgements

- Lightning Research Group: Many undergraduates, including C. Turner, R. Williams, E. Bell, R. Sink, N. Devor, N. Olson, K. Eskandar, B. Tsogbataar, and others.
- High School Collaborators: Monmouth-Roseville High School (L. Blackford), Galesburg High School (D. Baxter), Alwood High School (J. Siebken), Mercer County High School (C. Simpson), Burlington High School (B. Carter) and students.
- Yerkes Observatory (J. Gee, C. Wirth)
- Physics Department, University of Notre Dame (P. Fasano)
- National Science Foundation

Measuring High Energy Photons

Cole et al. estimated that it would be possible to detect X-rays at relatively large distances from the lightning stroke (in their case in an aircraft at an altitude of 10 km and 2 km from the main beam)

Parks et al. and McCarthy and Parks performed searches for lightning produced X-rays using aircraft based detectors.

"significant quantities of 3 keV to >12 keV X-rays are produced within thunderstorm clouds which support lightning discharge activity"

...statistically significant increases in X-Ray flux in the 5 keV to 110 keV range ...observations were consistent with bremsstrahlung produced by electrons "in a region with a length scale of 1 km."

Figure 2. Monte Carlo simulation of the RREA model of runaway breakdown, showing runaway electrons (black trajectories) and x-rays (red trajectories) for the configuration observed by *Dwyer et al.* [2004a]. The simulation is run until all x-rays and electrons either hit the ground or are absorbed. However, in order to show the spray of x-rays at the bottom, the electrons are only plotted for the first 1.5×10^{-7} s of the avalanche. The field of view of the lowest two collimated detectors described by *Dwyer et al.* [2004a] is also shown. These two detectors had the biggest x-ray signals for all the events observed.

