1. Overview

- ventilation- breathing
 external respiration- O₂ enters and CO₂ leaves blood in lungs
- respiratory gas transport- via vessels
 internal respiration- CO₂ enters and O₂ leaves blood in tissues

2. Terms

- 1. volumes
 - 1. tidal volume (TV): normal breath, ~500 ml
 - 2. inspiratory reserve volume (IRV): amount forcibly inhaled after tidal, ~2100-3200 ml 3. expiratory reserve volume (ERV): amount forcibly exhaled after tidal, ~1000-1200 ml 4. residual volume (RV): amount left over after extreme expiration, ~1200 ml

 - 2. capacities

 - inspiratory capacity (IC): amount inspired after tidal expiration = TV + IRV
 functional residual capacity (FRC): RV + ERV, amount left in lungs after tidal expiration
 vital capacity (VC): total amount of exchangeable air = TV + IRV + ERV

 - 4. total lung capacity (TLC): sum of all lung volumes, ~6000 ml
 - 3. dead space
 - 1. anatomical: conducting zone volume; ~150 ml
 - 1. if tidal volume = 500 ml, then only 350 ml in alveolar ventilation
 - 2. alveolar dead space
 - 1. alveolar collapse
 - 2. obstruction by mucus
- 3. Function Tests
 - minute or total ventilation = total amount of resp. tract gas flow/minute

 typically 6 L/ min (500 ml/ breath * 12 breaths/ min)
 up to 200 L/min during vigorous exercise!

 forced vital capacity (FVC)

 - - 1. deep breath
 - 2. max volume exhaled
 - as rapidly as possible
 note if FVC is low then restrictive diease (e.g., TB, polio)
 - 3. forced expiratory volume (FEV)
 - amount of air during specific time interval
 FEV₁ = FV in 1 second
 - - 1. should be 80% of FVC
 - 2. if not, obstructive pulmonary disease (e.g., bronchitis or asthma)
- 4. Gas Exchange
 - 1. Dalton's Law
 - 1. total pressure of gas mixture = sum of independent gas pressures
 - 2. partial pressure is directly proportional to percentage in total gas mixture 3. e.g., partial pressure of O₂ is 20.9% of 760 mm Hg = 159 mm Hg

 - 4. if @ high altitude, need masks
 - 2. Henry's Law
 - 1. at air gas interface, gas dissolves in liquid in proportion to partial pressure gas movement is determined by partial pressures in two phases
 External Respiration

an neophadon			
1. partial pressure gradients			
sou	irce	PO2 (mm Hg)	PCO2 (mm
ins	pired air	160	0.3
1	oired air	120	27
alv	eoli	104	40
tiss	ues	< 40	> 45
1. vei	ns	40	45

- 2. gas solubility
 - 1. CO_2 is 20 times more soluble in plasma than than $O_2!$
 - 2. diffuses even though the gradient is smaller (i.e., 5mm Hg)
- 3. functional aspects
 - 1. alveolar ventilation
 - 2. ventilation-perfusion coupling
 - ventilation- amount of gas reaching alveoli
 perfusion- blood flow in alveolar capillaries
 - 3. respiratory membranes
 - 1. thickness: 0.5 -1 μm
 - 2. surface area: 140 m², 40 times skin area
- 5. Oxygen Transport by Blood
 - 1. Hb has an S-shaped O2 uptake curve
 - 1. shape reflects cooperative interaction of HB subunits
 - 2. Effects of Temperature & pH
 - 1. temperature
 - 2. Bohr Shift
 - 3. right shift = lower O₂ affinity, therefore O₂ unloaded when/where needed most

- 4. fetal hemoglobin1. left shifted = high affinity for O₂, therefore takes it from maternal Hb
- 5. myoglobin

 - very left shifted = very high affinity
 doesn't give up O2 unless very low PO2

2. not S-shaped

1. reflects single subunit (no cooperation)

6. Control

- rol
 1. diaphragm: phrenic nerve
 2. medulla oblongata

 self-exciting reserve center
 pons smooths signal
 12 15 respirations/minute, "eupnea" = normal breathing

 3. stretch receptors in bronchioles & alveoli
 4. chemo receptors

 brain stem
 neck vessels
 most sensitive to high CO2
- 5. factors

 - physical
 volition (will)
 emotional
 chemical
- 6. figure
 7. Developmental Aspects