Physiology

 Impulses

1. irritability

- 1. ability to respond to stimulus & convert it to a nerve impulse
- 2. conductivity to:
 - nerves
 muscles
 - 3. glands
- 2. Basic Principles
 - 1. opposite charges attract
 - 2. energy must be used to separate opposite charges
 - separated electrical charges of opposite sign have potential energy
 voltage (V) is "potential"
 current (I) is flow of charge

 - 3. resistance (R) is hindrance to charge flow
 - 4. Ohm's Law

1. equation:
$$(I) = \frac{(V)}{(R)}$$

- 2. current is directly related to voltage
- current is inversely related to resistance
 in living systems, currents reflect flow of ions (not electrons)
- 3. Gradients across Membranes
 - chemical gradient (e.g., move from high to low concentration)
 electrical gradient (e.g., move toward area of opposite charge)
 both = electrochemical gradient
- 4. Membrane Ion Channels
 - - 1. opens in response to neurotransmitter binding 2. voltage gated
 - - opens in response to change in membrane voltage
 ion specific
 V = IR
- 5. Resting Membrane Potential
 - 1. potential difference between 2 points is -70 mV
 - cytoplasm is negatively charged with respect to outside
 - 1. Na⁺ & K⁺ are the major players
 - 2. Cl⁻ balances charge outside cell
 - 3. A- (anionic proteins) balance charge inside cell
 - 3. how gradient maintained?
 - 1. differential permeability of the membranes
 - potassium leaks out faster than sodium leaks in
 leaves interior negative
 - sodium-potassium pump
 stabilizes resting potential
 maintains diffusion gradients
- 6. Changes from resting potential
 - polarization- any membrane potential (resting = -70 mV)
 depolarization- reduction of membrane potential
 - 3. hyperpolarization- increase in membrane potential
- 7. Graded Potentials
 - short-lived
 local
 - magnitude proportional to strength of stimulus (from ionic flow) "musical chairs" effect from capacitance flow 3.
 - 4.
- 8. Action Potentials 1. resting state

 - 2. depolarization: Na⁺ gates open
 - action potential
 - 4. repolarization: Na+ gates close, K+ gates open
 - 5. undershoot: K^+ gates remain open, then close

 - return to electrical resting state
 sodium-potassium pump restor
 Implications sodium-potassium pump restores chemical resting state
 - - propagation- travelling wave threshold 1.
 - 2.
 - 3. all-or-none
 - 4. coding from stimulus intensity
 - 5. absolute & relative refractory periods
 - 1. absolute period between when Na^+ gates open & close
 - 2. relative period between when Na⁺ gates close & repolarization to resting potential is complete
 - 6. conduction velocities 1. axon diameter
 - resistance inversely proportional to cable diameter
 myelin sheath
 - - 1. saltatory conduction
 - 2. multiple sclerosis
 - 7. clinical
- 1. meds that change Na⁺ permeability
 - alcohol
 sedatives
 - 3. anesthetics
- 2. blood flow
- 3. cold