1. Body Fluids

- 1. water content
 - 1. infant- 73%
 - 2. young male 60%
 - 3. young female 50% (greater lipid, less muscle mass) 4. elderly- 45%

 - 2. compartments
 - 1. intracellular
 - 2. extracellular
 - 1. plasma 2. interstitial fluid
 - 3. composition
 - 1. recall water as universal solvent
 - 2. solutes
 - 1. electrolytes

 - dissociate (ionize)
 inorganic salts
 inorganic & organic acids & bases
 - some proteins
 nonelectrolytes
 - - 1. do not dissociate
 - 2. tend to be organics
 - glucose
 lipids

 - 3. creatinine
 - 4. urea
 - 3. electrolytes have greater osmotic power because they dissociate into more ions

 - water follows osmotic gradients
 intra vs. extracellular fluids

 extracellular similar except for protein in plasma

 - intracellular high in K⁺ and phosphate
 intracellular & extracellular nearly opposite
 - 1. reflects Na^+/K^+ pumps (driven by ATP)
- 4. movement among compartments
- 2. Water Balance
 - 1. overview
 - 1. intake 2500 ml/ day
 - 60% ingested liquid
 30% solid food

 - 3. 10% metabolic water / water of oxidation
 - 2. output
 - 1. 28% lost from lungs & skin
 - 2. 8% perspiration
 - 3. 4% feces
 - 4. 60% urine
 - 3. figure
 - 4. osmolarity maintained at 285 300 mOsm/L
 - 2. intake regulation 1. thirst
 - - 1. triggered by 10% decrease in plasma volume 2. 1 2% increase in plasma osmolarity

 - 3. hypothalamic thirst center has osmoreceptors

 - 3. output regulation 1. obligatory water loss: lungs, skin, kidneys
 - 2. fluid intake, diet, & water loss
 - 4. disorders
 - 1. dehydration
 - 2. hypotonic hydration
 - 1. ecstasy breakdown product is stronger than ADH, causes water to accumulate in brain,.... death 3. edema
 - 1. accumulation of fluid in interstitial space
 - 2. can result from hypoproteinemia
 - 1. protein malnutrition
 - liver disease
 - 3. glomerulonephritis
- 3. Electrolyte Balance
 - 1. Sodium Regulation 1. background
 - - 1. receptors have yet to be found (!)
 - 2. 65% of Na⁺ in renal filtrate is reabsorbed in proximal tubule
 - 3. 25% reclaimed in loops of Henle
 - 4. Aldosterone controls fate of remaining 10%
 - 2. Aldosterone
 - 1. if Aldosterone high all Na⁺ is reabsorbed in: 1. distal convoluted tubules

 - 2. collecting ducts

2. Aldosterone release controlled by JGA

1. responds to:

- sympathetic nervous system
 decreased filtrate osmolarity

 - 3. decreased stretch
- 2. releases:
 - 1. renin
 - 2. angiotensin II 3. aldosterone release
 - 4. time course: hours to days
 - 5. figure
- Cardiovascular Baroreceptors
 1. in heart, aorta, & carotids
 2. when stretched, alert brain stem
 - sends sympathetic signals to kidney decline
 afferent arterioles relax

 - 5. increased filtration
 6. reduced blood pressure 7. vice versa
- 4. ADH
 - 1. release increases water reabsorbtion in collecting ducts
 - 2. osmoreceptors in hypothalamus sense ECF osmolarity & trigger release of ADH from posterior pituitary 3. figure
- 5. ANP- atrial natriuretic peptide
 - 1. inhibits
 - 1. vasoconstriction
 - 2. Na⁺ retention
 - 3. water retention
- 2. Potassium is also regulated
- 4. Acid-Base Balance
 - 1. intro
 - typically narrow range pH = 7.35 7.45
 acidosis pH < 7.35
 alkalosis pH > 7.45
 - 2. blood buffers
 - 1. chemical, very rapid

 - chemical, very rapid
 bind hydrogen when pH drops & vice versa
 recall strong acids & bases dissociate completely
 weak acids & bases are slower to dissociate

 - 5. figure
 - 6. bicarbonate buffer system
 - 1. carbonic acid (H2CO3) & its salt, sodium bicarbonate (NaHCO3)
 - 1. HCl + NaHCO3 goes to H2CO3 + NaCl
 - 2. strong acid & weak base goes to weak acid & salt
 - 3. NaOH + H2CO3 goes to NaHCO3 + H2O
 - 4. strong base & weak acid goes to weak base and water
 - 2. strongs replaced by weaks, thus pH changes slowly
 - 3. respiratory system
 - 1. $CO_2 + H_2O \iff H_2CO_3 \iff H^+ + HCO_3^-$ (bicarbonate ion)
 - 2. if CO₂ accumulates or H⁺ released, then breathing rate increases to blow off CO₂
 - 3. if alkalosis, respiratory centers slow
 - 4. quick response 4. renal mechanisms
 - 1. can excrete bicarbonate
 - 2. can conserve bicarbonate
 - 1. reabsorbtion of filtered HCO₃⁻ is coupled to H⁺ secretion
 - 3. can generate new bicarbonate
 - 4. renal pH can vary between 4.5 to 8.0 !5. slower, long term response
- 5. Summary

 - 1. big variables 1. blood volume
 - 2. ion concentration
 - 2. big control issues
 - 1. intrinsic vs. extrinsic control
 - 2. fast vs. slow responses