
Chapter 23 Problems

23.1  The square surface shown in Fig 23-26 measures 3.2 mm on each side.  It is immersed in a 
uniform electric field with magnitude E = 1800 N/C.  The field lines make an angle of 35 degrees 
with a normal to the surface as shown.  Take the normal to be directed “outward” as though the 
surface were one face of a box.   Calculate the electric flux through the surface.   

The flux through this surface is

� 

ϕ = E Acosθ
θ = 180° − 35°
ϕ = (1800N / C) ⋅ (.0032m) 2 ⋅cos(180° − 35°)

= −1.51×10−2 N m 2 / C

Note that the angle is 180-35.   This makes the flux negative--which means the flow is into the box.  
A net flow into a closed surface is taken to be negative.

23.2.  The cube in Fig 23-27 has edge length of 1.4 m and is oriented as shown in a region of 
uniform electric field.  Find the electric flux through the right face if the field (in N/C) is given by 
(a) 

� 

6.00 ˆ i , (b) 

� 

−2.00 ˆ j  and (c) 

� 

−3.00ˆ i + 4.00 ˆ k .  

The area vector for the right face is

  

� 

 
A = (1.4m)2 ˆ j 

We can now compute flux.

(a)     

� 

 
E ⋅
 
A = 6.00 ˆ i ⋅ (1.4m) 2 ˆ j = 0

(b)   

� 

 
E ⋅
 
A = −2.00 ˆ j ⋅ (1.4m) 2 ˆ j = −2.00⋅ (1.4m)2 = −3.92Nm 2 / C

(c)  

� 

 
E ⋅
 
A = (−3.00ˆ i + 4.00 ˆ k ) ⋅ (1.4m)2 ˆ j = 0

(d)  The total flux through the cube is zero.   A uniform field is present--every field line that enters 
onside of the cube leaves the other.

23.4  In Fig. 23-28 a butterfly net is in a uniform electric field of magnitude E = 3.0mN / C .  The 
rim, a circle of radius a = 11.0cm  is aligned perpendicular to the filed.   The net contains no net 
charge.   Find the electric flux through the netting

The netting plus the circle make a closed surface.   We can use this surface and Gauss’ Law to find 
the flux through the netting.   We begin with Gauss
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23.7  In Fig. 23-29, a proton is a distance d/2 directly above the center of a square of side d.   What 
is the magnitude of the electric flux  through the square?  (Hint:  Think of the square as one face of 
a cube with edge d).

If we think of the charge as enclosed by a cube with the charge at the center, we can use Gauss’ 
Law to find the flux through the cube

� 

ϕcube =
qenc

ε0

= 1.81×10−8 Cm2

ϕside = 1
6
ϕcube = 3.01×10−9 N

C
m 2

23.8  When a shower is turned on in a closed bathroom, the splashing of the water on the bare tube 
can fill the room’s air with negatively charged ions and produce an electric field in the air as great 
as 1000 N/C.   Consider a bathroom with dimension 2.5m x 3.0 m x 2.0m .  Along the ceiling floor, 
and four walls, approximate the electric field in the air as being directed perpendicular to the surface 
and as having a uniform magnitude of 600 N/C.  Also, treat those surfaces as forming a closed 
Gaussian surface around the room’s air.  What are (a) the volume charge density ρ  and (b)the 
number of excess elementary charges e per cubic meter.

If we consider the walls, floor, and ceiling as forming a Gaussian surface, we can compute the total 
flux and find the charge contained in the bathroom.   This will allow us to find the volume charge 
density and the number of excess elementary charges e per cubic meter.

The flux through each surface can be written
 
ϕ =

E ⋅

A .   In this case, the flux will be negative since 

the field points in.   The total flux will be the sum of all the fluxes.  Note that we’ve written a 2 in 
from of each surface calculation, representing floor and ceiling, left and right wall, and front and 
back wall.



ϕ = −2 ⋅ 600 N
C

⋅ 2.5m ⋅ 3.0m − 2 ⋅ 600 N
C

⋅ 2.5m ⋅2.0m − 2 ⋅600 N
C

⋅ 2.0m ⋅ 3.0m

= −2.22 × 104 N
C

m2

We now use this result to find the total charge and charge density,.

ϕ =
qenc

ε0

qenc = ε0ϕ = 1.96 ×10−7 C

Now we can compute the charge density and electron number density

ρ =
q
V

=
1.96 ×10−7C

2.5m ⋅2.0m ⋅ 3.0m
= 1.31 ×10−8 C

m 3

ρ = # of electrons per m 3( ) ⋅ chg / electron( )

#of electrons per m 3( ) =
ρ

chg / electron( ) =
1.31 ×10−8 C / m 3

1.6 ×10−19 C

= 8.19 × 1010e / m3

23.12  Flux and nonconducting shells  A charged particle is suspended at the center of two 
concentric spherical shells that are very tin and made of non conducting material.   Figure 23-31a 
showed a cross section. Figure 32-31b gives the net flux ϕ  through a Gaussian sphere centered on 
the particle as a function of the radius  r of the sphere.   (a)  What is the charge on the central 
particle?  What are the net charges of (b) shell A and (c) shell B?

If we know that flux through the Gaussian surface, we can find the charge enclosed.

For r inside the inner shell A, only the suspended point charge is enclosed.

ϕ =
qenc

ε0

qenc = ϕε0 = 2 ×105 ⋅ 8.85 ×10−12 = 1.77 × 10−6 C
qenc = qcenter = 1.77 ×10−6 C

For r between shells A and B, the Gaussian surface encloses both the central point charge and the 
charge on shell A.

ϕ =
qenc

ε0

qenc = ϕε0 = −4 ×105 ⋅ 8.85 × 10−12 = −3.54 ×10−6 C

qenc = qcenter + qA = −3.54 ×10−6 C
qA = −3.54 ×10−6C − qcenter = −5.31× 10−6 C



A sphere outside B encloses all the charge.

ϕ =
qenc

ε0

qenc = ϕε0 = 6 ×105 ⋅ 8.85 ×10−12 = 5.31× 10−6 C

qenc = qcenter + qA + qB = 5.31 ×10−6C
qB = 5.31×10−6C − qcenter − qA = 8.85 × 10−6 C

23.15  A uniformly charged conducting sphere of 1.2m diameter has a surface charge density of 

� 

8.1×10−6C / m 2   (a)  Find the net charge on the sphere.  What is the total electric flux leaving the 
surface of the sphere.

(a)  

� 

q = σ ⋅ 4π r 2 = 3.66 ×10−5 C

(b) 

� 

ϕ =
qenc

ε0
=

3.66 ×10−5

8.85 ×10−12
Nm 2

C
= 4.14 ×106 Nm2

C

23.20  Figure 23-34 shows a section of a long, thin walled metal tube of radius R = 3.00cm , with a 
charge per unit length λ = 2.00 ×10−8 C / m   What is the magnitude E of the electric field at radial 
distance (a) r = R / 2.00  and (b) r = 2.00R

Let’s begin by considering this tube to be infinitely long.  We can draw a cylindrical surface 
centered on the axis at some distance from the center.   
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When our Gaussian Surface is inside the tube, there is NO net charge enclosed, so for r<R, 



� 

E =
λnet

2πε0r
λnet = 0
E = 0

Outside the tube at r = 2.0 R, 

� 

E =
λnet

2πε0r

λnet = 2.0 ×10−8C / m
r = 2.0 ⋅R = 0.06m

E =
2.0 ×10−8C / m
2π ε0 ⋅0.06m

= 6 ×103 N / C

23.21 An infinite line of charge produces a field of magnitude 4.5 ×104 N / C at a distance of 2m.  
Calculate the linear charge density.   

This problem is very similar to the previous problem.  We will use the same approach to derive the 
expression for the field and then solve for the linear charge density.
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E = 4.5 ×104 N / C
λnet = 5 ×10−6C / m



23.27  Figure 23-37  is a section of a conduction rod of radius R1 = 1.30mm  and length 
L = 11.0m  inside a thin-walled coaxial conducting cylindrical shell of radius R2 = 10.0R1  and the 
(same) length L .  The net charge on the rod is Q1 = +3.40 × 10−12 C ; that on the shell is Q2 = −2Q1  
What are (a) the magnitude E and (b) direction (radially inward or outward) of electric field at a 
radial distance r = 2R2 ?  What are (c) E and (d) the direction at r = 5R1  What is the charge on the 
(e)interior and (f) exterior surface of the shell.

For parts (a) and (b), we consider the field outside the outer shell.   If we write out Gauss’ law for a 
surface that is outside both the rod and shell
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The net charge per unit length is the net charge divided by the length.   The net charge inside the 
enclosing Gaussian surface is the total charge on the rod and the shell.

qnet = Q1 + Q2 = −3.40 ×10−12 C

λnet =
qnet

L
=
−3.40 ×10−12 C

11.0m
= −3.09 ×10−13C / m

r = 2.00R2 = 0.026m

E =
λnet

2π ε0r
=
−3.09 ×10−13 C / m

2π ε0 ⋅ 0.026m
= −0.214N / C

The minus sign indicates that the field points inward.

For parts c and d, we choose a Gaussian surface in the gap since r = 5R1  is in the gap.   The 
Gauss’ Law calculation is exactly the same, except the charge per unit length enclosed will be 
different since we only enclose the rod.
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Now we use the charge on the rod only.

qnet = Q1 = 3.40 ×10−12C

λnet =
qnet

L
=

3.40 ×10−12 C
11.0m

= 3.09 ×10−13 C / m

r = 5.00R1 = 0.0065m

E =
λnet

2π ε0r
=

3.09 × 10−13 C / m
2π ε0 ⋅ 0.0065m

= 0.855N / C

The field points radially outward.

To find the charge on the inner surface of the shell, we choose a Gaussian Surface inside the shell.  
(in the conductor itself).  If we choose a Gaussian Surface inside the conducting shell, we know that 
the E field and flux must be zero.   If we solve for the charge  on the inner surface of the shell, we 
find that it must be equal and opposite to the charge on the rod, since the charge enclosed must be 
zero.

  

� 

 
E ⋅d
 
A ∫ =

qenc

ε0

0 =
qenc

ε0

0 =
qinner + qrod

ε0

qinner = −qrod = −Q1

= −3.40 ×10−12C



If −Q1  is on the inner surface of the shell andQ2 = −2Q1  is on the total shell, then 
−Q1 = −3.4 ×10−12 C  must be on the outer surface of the shell.

23.34  A large, flat, nonconducting surface has a uniform charge density 

� 

σ .   A small circular hole 
of radius R has been cut in the middle of the surface as shown in Fig. 24-32.   Ignore fringing of 
the field lines around all edges and calculate the electric field at a point P a distance z from the 
center of the hole along its axis.   (Hint:  See Eq. 23-26 and use superposition)

Superposition is the key to this problem   Superposition is the principle that allows you to construct 
the field due to a number of charge distributions by adding the fields from each distribution 
together as vectors.

In this problem, the field at the point p will be the field due to an infinite plane - the field due to a 
disk.   We think of this distribution as a plane and then we subtract the hole.

� 

E = E plane − Edisk

=
σ

2ε0

−
σ

2ε0

1− z
z 2 + R2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

= σ
2ε0

z
z2 + R2

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ 

23.47  In Fig. 23-48, a nonconducting spherical shell of radius a = 2.00cm  and outer radius 

b = 2.40cm has (within its thickness) a positive volume charge density ρ =
A
r

 where A is a 

constant and r is the distance from the center of the shell.  In addition a small ball of charge 
q = 45.0 fC  is located at that center.  What value should A have if the electric field in the shell 
(a ≤ r ≤ b) is to be uniform.

We need to arrange the charge so that the field in the shell is constant in magnitude.   We begin 
with a spherical Gaussian surface in the shell (a ≤ r ≤ b)  For this spherical geometry, the electric 
field is parallel to the dA vector everywhere on the surface, so the dot product becomes a simple 
multiplication because the angle between the E vector and the dA vector is zero everywhere.   The 
magnitude of E is the same everywhere by symmetry, so we can pull E out of the integration.  We 
are left with integrating dA over our spherical Gaussian surface.   
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We need to carefully calculate the charge enclosed.   It consists of the inner ball of charge and a 
portion of the shell’s charge.   Since the charge density of the shell is not uniform, we need to find 
the shell portion of the charge by integrating.

qenc = qball + ρdV
a

r

∫

= qball +
A
r
⋅ 4πr 2 dr

a

r

∫

= qball + 4πA r dr
a

r

∫

= qball + 4πA(r 2

2
−

a2

2
)

= qball + 2πAr2 − 2π Aa2

E ⋅ 4π r2 =
qenc

ε0

E ⋅ 4π r2 =
qball + 2πAr2 − 2π Aa2

ε0

For E to be a constant, the left hand side of this equation must match the right hand side.   Since the 
right hand side has only an r 2 term, the right hand side may only have the same r dependence.   We 
can choose A so that this happens.

E ⋅ 4π r2 =
qball + 2πAr2 − 2π Aa2

ε0

qball − 2πAa2 = 0

A =
qball

2πa2 =
45.0 ×10−15 C
2π ⋅ (0.02)2 = 1.79 × 10−11 C / m2



23.49  In Fig. 23-50, a solid sphere of radius a = 2.00cm  is concentric with a spherical conducting 
shell of inner radius b = 2.00a  and outer radius c = 2.40a .  The sphere has a net uniform charge 
q1 = +5.00 fC ;  The shell has a net charge q2 = −q1 .  What is the magnitude of the electric field at 
radial distances (a) r = 0 , (b) r = a / 2.00 , (c) r = a , (d) r = 1.5a , (e)r = 2.3a , and (f) r = 3.5a .  
What is the net charge on the (g) inner and (h) outer surface of the shell.

We begin by considering a spherical Gaussian Surface.   For this spherical geometry, the electric 
field is parallel to the dA vector everywhere on the surface, so the dot product becomes a simple 
multiplication because the angle between the E vector and the dA vector is zero everywhere.   The 
magnitude of E is the same everywhere by symmetry, so we can pull E out of the integration.  We 
are left with integrating dA over our spherical Gaussian surface.   
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The task for each part of the problem is to find the charge enclosed.   For part (a), since our 
Gaussian surface is at zero radius, the charge enclosed is zero.   

r = 0
E = 0

(b)  When we put our Gaussian surface at r = a / 2.00 , we enclose some portion of the inner 
sphere.



qenc = ρ ⋅Venc = ρ ⋅ 4
3
π r 3

E ⋅ 4π r2 =
qenc

ε0

E ⋅ 4π r2 =
ρ ⋅

4
3
π r 3

ε0

E =
ρ r
3ε0

ρ =
5.0 ×10−15 C
4
3
π (0.02m)3

= 1.49 × 10−10 C / m 3

r = a / 2 = 0.01m

E =
1.49 ×10−10 ⋅0.01

3ε0

= 0.562N / C

We can use this same expression to find the field at r = a

E =
ρ r
3ε0

ρ = 1.49 ×10−10 C / m3

r = a / 2 = 0.02m

E =
1.49 × 10−10 ⋅0.02

3ε0

= 0.112N / C

When we consider the field in the gap, r = 1.5a ,  we need to reexamine the charge enclosed.   The 
charge enclosed is the total charge on the inner sphere.

qenc = 5.0 ×10−15 C

E ⋅ 4π r2 =
qenc

ε0

E =
qenc

4π ε0r
2

r = 1.5a = 0.03m

E =
5.0 ×10−15

4π ε0 (0.03)2

= 0.04995N / C



At r = 2.3a , our Gaussian surface is in the conductor.  We know that the electric field must be 
zero.  

r = 2.3a
E = 0

At r = 3.5a , our Gaussian surface encloses both the inner sphere and the spherical shell.

qenc = q1 + q2 = q1 − q1 = 0

E ⋅ 4π r2 =
qenc

ε0

E = 0

We can use our result from inside the conducting sphere to find the charges on the inner and outer 
surface of the shell.  Since we know that the E=0 in a conductor, we know that the charge enclosed 
is zero.

E ⋅ 4π r2 =
qenc

ε0

E = 0
qenc = 0 = q1 + qinner

qinner = −q1 = −5.0 ×10−15 C
qshell = qinner + qouter

qouter = qshell − qinner = q2 − qinner = −q1 − (−q1 )
= 0

 



23.50  Figure 23-51 shows a spherical shell with uniform volume charge density 
ρ = 1.84 ×10−9C / m 3 , inner radius a = 10.0cm  and outer radius b = 2.00a .  What is the 
magnitude of the electric field at radial distances (a) r = 0 , (b) r = a / 2.0 , (c) r = a , (d) r = 1.5a , 
(e) r = b , (f) r = 3.00b

We begin by considering a spherical Gaussian Surface.   For this spherical geometry, the electric 
field is parallel to the dA vector everywhere on the surface, so the dot product becomes a simple 
multiplication because the angle between the E vector and the dA vector is zero everywhere.   The 
magnitude of E is the same everywhere by symmetry, so we can pull E out of the integration.  We 
are left with integrating dA over our spherical Gaussian surface.   
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For (a) r = 0 , (b) r = a / 2.0 , and (c) r = a , the charge enclosed is zero so E = 0 .   For d) 
r = 1.5a ,  and (e) r = b , we need to calculate the charge enclosed.

qenc = ρ ⋅Venc = ρ ⋅
4
3
π r 3 −

4
3
π a3⎛

⎝⎜
⎞
⎠⎟

E ⋅ 4π r2 =
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4
3
π r 3 −

4
3
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ε0

E =
ρ (r 3 − a3 )

3ε0r
2

=
1.84 × 10−9 C / m3 (r3 −a3 )

3ε0r
2

r = 1.5a = 0.15m
E = 7.32N / C
r = b = 0.20m

E = 12.13N / C

For the last section (f),  we enclose the entire shell so we  use the entire charge on the shell.
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ε0

E =
ρ (b3 −a3 )

3ε0r
2

=
1.84 × 10−9 C / m3 (b3 −a3)

3ε0r
2

r = 3b = 0.60m
E = 1.35N / C


