
Chapter 8

8.2  In Fig. 8-27, a single frictionless roller-coaster car of mass m=825 kg tops the first hill with a 
speed of v0 = 17.0m / s at a height h = 42.0m .  How much work does the gravitational force on 
the car from that point to (a) point A, (b) point B, and (c) point C?   If the mass m were doubled, 
would the change in gravitational potential energy

a)  Between the initial point and point A, there is no change in height, so no work

b) The work done is given by 

W = −ΔU = −mg(hB − hi )
= −825kg ⋅9.8m / s2 ⋅ (21.0m − 42m)
= 169,785J

c) Point C is at zero height.

W = −ΔU = −mg(hB − hi )
= −825kg ⋅9.8m / s2 ⋅ (0.0m − 42m)
= 339,570J

If the mass doubles, the work doubles.

8.4   Figure 8-31 shows a ball with mass m = 0.341kg attached to the end of a thin rod with 
length L = 0.452m and negligible mass.  The other end of the rod is pivoted so that the ball can 
move in a vertical circle  The rod is held horizontally as sown and then given enough of a 
downward push to cause the ball to swing down and around and just reach the vertically up 
position with zero speed there.   How much work is done on the ball by the gravitational force 
from the initial point (a) the lowest point, (b) the highest point, and (c) the point on the right 
level with the initial point?  If the gravitation potential energy of the ball-earth system is taken to 
be zero at the initial point, what is it when the ball  reaches (d) the lowest point, (e) the highest 
point and (f) the point on the right level with the initial point?  (g)  Suppose the rod were pushed 
harder sot that the ball passed through the highest point with nonzero speed.  Would ΔUg from

the lowest point to the highest point then be greater than, less than, or the same as it was when 
the ball stopped at the highest point.

Since the gravitational force is conservative, the work done and change in potential energy only 
depend on the initial and final position.

(a)  Work done in moving from initial position to lowest position

W = mgL = 1.51J
(b)  Work done in moving from initial position to highest position



W = −mgL = −1.51J
(c)  Work done in moving from initial position to level position

W = 0
Defining the potential to be zero at the initial point is actually defining the initial height as zero 
height.  In that case

(d) Potential at lowest point

U = mgy = mg(−L) = −1.51J
(e) Potential at highest point

U = mgy = mg(L) = 1.51J

(f) Potential at level point

U = mgy = mg(0) = 0J
(g) The work and potential are not dependent on velocity in this problem.   The answers are 
unchanged.

8.4  In Fig 8-30, a 2.00g ice flake is released from the edge of a hemispherical bowl whose radius 
is 22 cm. The flake=bowl contact is frictionless.  (a) how much work is done on the flake by the 
gravitation force during the flake’s descent to the bottom of the bowl?  (b) What is the change in 
the potential energy of the flake Earth system during the descent?  (c) If that potential energy is 
taken to be zero at the bottom of the bowl, what is its value when the flake is released?  (d) If 
instead, the potential energy is taken to be zero at the release point, what is its value when the 
flake reaches the bottom of the bowl (e)  If the mass of the flake were doubled, would the 
magnitudes of the answers to (a) through (d) increase, decrease, or remain the same?

a)   The work done is 

� 

W = −ΔU
= −(Uf −Ui)
= −(0 −mgy)
= 2 ×10−3 ⋅ 9.8m / s2 ⋅ 0.22m
= 4.312 ×10−3J

For this part of the problem, assume the bottom of the bowl is zero height



� 

Uf = 0
Ui = mgR
W = −(Uf −Ui)

= mgR

b)  See part (a).   

� 

ΔU = −4.312 ×10−3J

c)  See part (a)   

� 

Ui = 4.312 ×10−3J

d)  Assume that the top of the bowl is 0 height.  The bottom would be -R

� 

Ui = 0
Uf = mg(−R) = −4.312 ×10−3J

e)  All of these answers are linear in m.  If you double the mass, the results double.

 
8.6 In Fig. 8-31, a small block of mass 

� 

m = 0.032kg can slide along the frictionless loop-the-loop 
with a loop radius of R=12 cm.  The block is released from rest at a point P, at height 5.0R above 
the bottom of the loop.  A block slides on a track from a height 5R.

a)  How much work does the weight do on the block as it travels from P to Q?  Assume that the 
potential energy at the bottom is 0.

� 

W = −ΔU
= −(mgy f −mgyi)
= −(mgR −mg ⋅ 5R)
= 4mgR
= 4 ⋅ 0.032kg ⋅ 9.8m / s2 ⋅ 0.12m
= 0.151J

b)   How much work does the weight do on the block as it travels from P to the top of the loop?  
Assume that the potential energy at the bottom is 0.

� 

W = −ΔU
= −(mgy f −mgyi)
= −(mg ⋅ 2R −mg ⋅ 5R)
= 3mgR
= 3 ⋅ 0.032kg ⋅ 9.8m / s2 ⋅ 0.12m
= 0.113J



c-e)  Calculate the potential energies.  Assume that the potential energy at the bottom is 0.

	
 At point P	
 	


� 

U = mg(5R) = 0.188J

	
 At point Q	
 	


� 

U = mg(R) = 0.0376J

	
 At top of loop	
 	


� 

U = mg(2R) = 0.0753J

f)  The potential energies and work done are unaffected by the initial velocity that the particle 
might have.

8.13  A 5.0 g marble is fired vertically upward using a spring gun.  The spring must be 
compressed 8.0 cm if the marble is to just reach a target 20 m above the marble’s position on the 
compressed spring.  (a)  What is the change ΔUg in the gravitational potential energy of the 

marble-earth system during the 20 m ascent?  (b)  What is the change ΔUs in elastic potential 
energy of the spring during its launch of the marble?   (c) What is the spring constant of the 
spring?
The change in gravitation potential energy is calculated from the change in height.

ΔUg = mgh − 0 = 0.005 ⋅9.8 ⋅20 = 0.98J

All of the gain in gravitational potential energy came from loss in energy from the spring.

ΔUs = −ΔUg = −0.98J

We can compute the spring constant since we know the energy and compression of the spring.

ΔUs = −
1
2
kx2

k = −2ΔUs

x2
=
−2(−0.98J )
(0.08m)2

= 306.25N / m

8.19  Figure 8-34 shows an 8.00kg stone at rest on a spring.  The spring is compressed 10.0 cm 
by the stone.  (a)  What is the spring constant?  (b)  The stone is pushed down an additional 30 
cm and released.   What is the elastic potential energy of the compressed spring just before that 
release?  (c)  What is the change in the gravitation potential energy of the stone-earth system 
when the stone moves from the release point to its maximum height?  (d)  What is that maximum 
height, measured from the release point?

There are a number of ways of approaching this problem.   

(a).   Since the stone is at rest, we know that the net force on it is zero.   



Fs

mg

                

0 = Fs − mg
Fs = mg
−ky = mg

k = mg
−y

=
8kg ⋅9.8m / s2

−(−0.1m)
= 784N / m

If we examine the compression steps....

0.1m

0.3m

The total energy stored in the spring is

ΔUs =
1
2
kx2 = 1

2
⋅ 784N / m ⋅ (0.40m)2 = 62.72J

The gravitational potential gets all of this energy when the stone reaches maximum height.

ΔUg = ΔUs = 62.72J

We can compute the maximum height from the compressed release point.

ΔUg = mgy

y =
ΔUg

mg
=

62.72J
8kg ⋅9.8m / s2

= 0.8m



8.21  The string in Fig 8-36 is L=120 cm long, has a ball attached to one end, and is fixed at its 
other end.  The distance d to the fixed peg at point P is 75.0cm.  When the initially stationary ball 
is released wit the string horizontal as shown, it will swing along the dashed arc.  What is its 
speed when it reaches (a) its lowest point and (b) its highest point after the string catches on the 
peg.

We begin by computing the total energy.

� 

Ei = 1
2
mvi

2 + mghi

= 0 + mgL
Ei = mgL

The total energy remains constant throughout this problem.   We now consider the lowest point.

� 

ELow = 1
2
mvLow

2 + mghLow

hLow = 0

ELow = 1
2
mvLow

2 + 0

ELow = Ei

1
2
mvLow

2 = mgL

vLow = 2gL = 4.85m / s

b)  We now consider the high point after catching.   Again, energy is conserved

EHigh =
1
2
mv2High + mghHigh

Ei = EHigh

mgL =
1
2
mv2High + mg(2r)

1
2
mv2High = mgL − mg(2r)

v2High = 2gL − 2g(2r)

vHigh = 2gL − 2g(2r)
= 2.42m / s

8.34  A boy is seated on top of a hemispherical mound of ice of radius R=13.8m.  He begins to 
slide down the ice, with a negligible initial speed.  Approximate the ice as being frictionless.  At 



what height does the boy lose contact with the ice.  Show that he leaves the ice at point whose 
height is 2R/3 if the ice is frictionless.

We begin with a picture.

We are interested in finding when the Normal force disappears.   We treat this as a circular 
motion problem

� 

mv 2

R
= mgcosθ − N

N = 0
mv 2

R
= mgcosθ

v = Rgcosθ
We now know the velocity when the boy comes off the ice.   We now use conservation of energy 
to find out how high he is when this happens.



Ei =
1
2
mvi

2 + mghi = 0 + mgR

Ef =
1
2
mvf

2 + mghf

E f = Ei

1
2
mvf

2 + mghf = mgR

from above we substitute for vf
v f
2 = Rgcosθ

cosθ =
hf
R

1
2
mRg ⋅

hf
R

+ mghf = mgR

hf =
2
3
R = 9.2m

8.63  The cable of the 1800 kg elevator cab in Fig. 8-54 snaps when the cab is at rest at the first 
floor, where the cab bottom is a distance d = 3.7m above a spring of spring constant 
k = 0.15MN / m .  A safety device clamps the cab against guide rails so that a constant frictional 
force of 4.4 kN opposes the cab’s motion.  (a)  Find the speed of the cab just before it its the 
spring.  (b)  Find the maximum distance x that the spring is compressed (the frictional force still 
acts during this compression).  (c)  Find the distance that the cab will bounce back up the shaft.  
(d) using conservation of energy, find the approximate total distance that the cab will move 
before coming to rest.  Assume that the frictional force on the cab is negligible when the cab is 
stationary.)

To find the speed, we find the work done by friction and gravity and then equate that work to the 
change in kinetic energy during the fall.

W = mgy − Ff y = 1800kg ⋅9.8m / s
2 ⋅ 3.7m − 4.4 ×103N ⋅ 3.7m = 48,988J

ΔKE =W
1
2
mvf

2 − 0 =W

vf =
2W
m

=
2 ⋅ 48988J
1800kg

= 7.38m / s

During the stopping process, friction does work,  the spring does work, and gravity does work.



W = −Ff y −
1
2
ky2 + mgy

KEf − KEi = −Ff y −
1
2
ky2 + mgy

0 − KEi = −Ff y −
1
2
ky2 + mgy

−48988J = −4400y − 1
2
⋅0.15 ×106N / m ⋅ y2 +1800kg ⋅9.8m / s2y

y = 0.901m


