Sample Exam 4

Short Answer

1. A metal bar of length 1 m travels through a perpendicular B field with magnitude 1 T . How fast would the bar need to go to develop an emf of 1 V across its ends.

$$
\begin{aligned}
& \varphi_{B}=l B x \\
& \varepsilon=-\frac{d \varphi_{B}}{d t}=-l B \frac{d x}{d t} \\
& \varepsilon=-l B v \\
& |v|=\frac{\varepsilon}{l B}=\frac{1 V}{1 m \cdot 1 T}=1 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

2. A uniform magnetic field passes through a square loop of wire with 5 turns. The loop has side 0.1 m and is oriented at 30 degrees with respect to the field. What is the flux through the wire? If the field drops from 5 T to 4 T in 1 minute, what emf will develop and in what direction will it point.

$$
\begin{aligned}
& \varphi_{\text {1loop }}=B A \cos \theta=5 T \cdot(0.1)^{2} \cdot \cos 30=0.0433 \mathrm{Tm}^{2} \\
& \varphi=5 \cdot \varphi_{1 \text { loop }}=0.217 \mathrm{Tm}^{2} \\
& |\varepsilon|=\frac{d \varphi}{d t}=5 \cdot \frac{(5 T-4 T) \cdot(0.1)^{2} \cdot \cos 30}{60 \mathrm{~s}}=7.22 \times 10^{-4} \mathrm{~V}
\end{aligned}
$$

3. A cylindrical solenoid is 0.5 m long and has 50 turns per cm . What field is present if 1 amp flows through the wire? (Hint: Calculate using Ampere's Law). What is the energy density?

$$
\begin{aligned}
& \oint \vec{B} \cdot d \vec{l}=\mu_{0} i_{e n c} \\
& B l=\mu_{0} i n l \\
& B=\mu_{0} i n=4 \pi \times 10^{-7} \cdot 1 A \cdot \frac{50}{0.01 \mathrm{~m}}=6.283 \times 10^{-3} \mathrm{~T} \\
& u=\frac{1}{2 \mu_{0}} B^{2}=\frac{1}{2 \cdot 4 \pi \times 10^{-7}} \cdot\left(6.283 \times 10^{-3} \mathrm{~T}\right)^{2}
\end{aligned}
$$

4. Compute the inductance of the solenoid in SA 3.

$$
\begin{aligned}
& L=\frac{\varphi}{i}=\frac{N B A}{i}=\frac{n l \mu_{0} i n A}{i}=\mu_{0} n^{2} l A \\
& L=4 \pi \times 10^{-7} \cdot\left(\frac{50}{0.01 m}\right)^{2} \cdot 0.5 m \cdot A
\end{aligned}
$$

5. A 100 mH inductor has a current given by $\mathrm{i}=2 \mathrm{t}^{2}+3 \mathrm{t}+4$. What voltage develops across the inductor at $\mathrm{t}=3 \mathrm{sec}$.

$$
V_{L}=L \frac{d i}{d t}=L \cdot(4 t+3)=100 \times 10^{-3} \cdot(4 \cdot 3+3)=1.5 \mathrm{~V}
$$

6. Write Maxwell's equations and briefly explain each equation.
(a) $\oint \vec{E} \cdot d \vec{A}=\frac{q_{\text {encl }}}{\varepsilon_{0}}$
(b) $\oint \vec{E} \cdot d \vec{r}=-\frac{d \varphi_{B}}{d t}$
(c) $\oint \vec{B} \cdot d \vec{A}=0$
(d) $\oint \vec{B} \cdot d \vec{r}=\mu_{0} i_{e n c l}+\mu_{0} \varepsilon_{0} \frac{d \varphi_{E}}{d t}$
(a) Gauss' Law for E: The total flux of E through an enclosed surface is proportional to the charge enclosed
(b) A changing magnetic flux induces an electric field.
(c) Gauss' Law for B: There is no free magnetic charge.
(d) A magnetic field is produced by either a current or a changing electric flux.
7. Describe the underdamped, critically damped, and overdamped solutions of the RLC circuit.

8. An emf with frequency 60 Hz and $V_{0}=300$ drives a circuit with resistance 100 Ohms and inductance 0.5 H . What are the RMS voltage, the inductive reactance X_{L}, the impedance Z , and the maximum and RMS current.

$$
\begin{aligned}
& V_{R M S}=\frac{V_{0}}{\sqrt{2}}=212.1 \mathrm{~V} \\
& X_{L}=\omega L=2 \pi f L=2 \pi \cdot 60 \mathrm{~Hz} \cdot 0.5 \mathrm{H}=60 \pi \Omega=188.5 \Omega \\
& Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}=\sqrt{(100 \Omega)^{2}+(188.5 \Omega-0)^{2}}=213.4 \Omega \\
& i_{R M S}=\frac{V_{R M S}}{Z}=\frac{212.1 \mathrm{~V}}{213.4 \Omega}=0.994 \mathrm{~A} \\
& i_{0}=\sqrt{2} i_{\text {RMS }}=1.41 \mathrm{~A}
\end{aligned}
$$

10. An incoming radio wave has a frequency f of 780 Khz . If the inductor in an LC circuit is 100 mH , what should the capacitance be set to to tune this radio to this frequency.
$f=780 \times 10^{3} \mathrm{~Hz}$
$2 \pi f=\sqrt{\frac{1}{L C}}$
$C=\frac{1}{L\left(4 \pi^{2} f^{2}\right)}=\frac{1}{100 \times 10^{-3}\left(4 \pi^{2} \cdot\left(780 \times 10^{3} \mathrm{~Hz}\right)^{2}\right)}=4.16 \times 10^{-13} \mathrm{~F}$
11. Derive the expression for the magnitude of the magnetic field at a distance r from a long straight wire.

We use Ampere's Law

$$
\begin{aligned}
& \oint \vec{B} \cdot d \vec{r}=\mu_{0} i \\
& \oint \vec{B} \cdot d \vec{r}=\mu_{0} i \\
& B \cdot(2 \pi r)=\mu_{0} i \\
& B=\frac{\mu_{0} i}{2 \pi r}
\end{aligned}
$$

11. A current of 10 A is distributed uniformly across a beam with a radius a. Find the magnetic field at a distance r from the center of the beam. Consider both $r<a$ and $r>a$. We can now use Ampere's Law (\mathbf{J} is the current density: current /area)

$$
\oint \vec{B} \cdot d \vec{r}=\mu_{0} i
$$

For $\mathrm{r}<\mathrm{a}$

$$
\begin{aligned}
& \oint \vec{B} \cdot d \vec{r}=\mu_{0} i \\
& B \cdot(2 \pi r)=\mu_{0} J \pi r^{2} \\
& B=\frac{\mu_{0} J r}{2}
\end{aligned}
$$

For $\mathrm{r}>=\mathrm{a}$

$$
\begin{aligned}
& \oint \vec{B} \cdot d \vec{r}=\mu_{0} i \\
& B \cdot(2 \pi r)=\mu_{0} J \pi a^{2} \\
& B=\frac{\mu_{0} J a^{2}}{2 r}
\end{aligned}
$$

Problems.

1. A magnetic field is given by

$$
B=B_{0} \cos \omega t
$$

Note that the magnitude of B changes, but not its direction. A circular loop is placed in this field and oriented at an angle θ
a. What is the magnetic flux through the loop?

$$
\varphi=B A \cos \theta
$$

b. What emf is induced? Draw a picture to indicate the direction of the induced current

$$
\begin{aligned}
\varepsilon & =-\frac{d \varphi_{B}}{d t} \\
& =-\pi r^{2} \frac{d B}{d t} \cos \theta \\
& =-\pi r^{2}\left(-\omega B_{0} \sin \omega t\right) \cos \theta \\
& =\pi r^{2} \omega B_{0} \sin \omega t \cos \theta
\end{aligned}
$$

The emf oscillates back and forth! The direction changes back and forth, always flowing to produce a B to oppose the change.
c. What angle leads to the maximum induced emf?

$$
\theta=0 \text { leads to maximum change in flux }
$$

d. Assume that θ is now 0 . What electric field is present at the radius of the wire?

$$
\begin{aligned}
& \oint \vec{E} \cdot d \vec{l}=-\frac{d \varphi_{B}}{d t} \\
& E(2 \pi r)=-\pi r^{2} \frac{d B}{d t} \\
& E=-\frac{r}{2} \cdot\left(-\omega B_{0} \sin \omega t\right) \\
& E=\frac{r}{2} \cdot\left(\omega B_{0} \sin \omega t\right)
\end{aligned}
$$

2. A circular parallel plate capacitor with radius R and separation d in an RC circuit discharges via the equation

$$
q=q_{0} e^{-t / R C}
$$

a. What is the electric field as a function of time?

$$
\begin{gathered}
V=\frac{q}{C}=\frac{q_{0} e^{-t / R C}}{C} \quad C=\frac{\varepsilon_{0} A}{d} \\
E=\frac{V}{d}=\frac{q_{0} e^{-t / R C}}{C d}
\end{gathered}
$$

b. What is the displacement current at $\mathrm{a} / 2$ and a ?

$$
\begin{aligned}
i_{d} & =\varepsilon_{0} \frac{d \varphi_{E}}{d t} \\
& =\varepsilon_{0}\left(\pi a^{2}\right) \frac{d E}{d t} \\
& =\varepsilon_{0}\left(\pi a^{2}\right) \cdot \frac{q_{0} e^{-t / R C}}{C d} \cdot \frac{-1}{R C} \quad \text { at radius } a \\
& =\varepsilon_{0}\left(\pi \frac{a^{2}}{4}\right) \cdot \frac{q_{0} e^{-t / R C}}{C d} \cdot \frac{-1}{R C} \quad \text { at radius } a / 2
\end{aligned}
$$

c. What is the induced B at at $a / 2$ and a ?

$$
\begin{aligned}
& \oint \vec{B} \cdot d \stackrel{\rightharpoonup}{l}=\mu_{0} i_{d} \\
& B(2 \pi a)=\mu_{0} i_{d} \\
& B=\frac{\mu_{0} i_{d}}{(2 \pi a)} \text { at radius } a \\
& B=\frac{\mu_{0} i_{d}}{\left(2 \pi \frac{a}{2}\right)} \text { at radius } r / 2
\end{aligned}
$$

Note: You need to plug in the correct displacement current from part b.
3. Consider an RLC circuit with $\mathrm{R}=10 \mathrm{Ohms}, \mathrm{L}=500 \mathrm{mH}$ and $\mathrm{C}=1 \mathrm{microF}$.
a. Write the differential equation that describes this circuit by using Kirchoff's voltage loop rule. What is the natural osc. frequency?

$$
\begin{aligned}
& L \frac{d^{2} q}{d t^{2}}+R \frac{d q}{d t}+\frac{1}{C} q=0 \\
& \omega_{0}=\sqrt{\frac{1}{L C}}=\sqrt{\frac{1}{500 \times 10^{-3} H \cdot 1 \times 10^{-6} \mathrm{~F}}}=1414.2
\end{aligned}
$$

b. Now consider driving this circuit. What are X_{L}, X_{C}, and Z for this circuit? Sketch the amplitude of the voltage across the capacitor as a function of the frequency.

$$
\begin{aligned}
& X_{L}=\omega L=2 \pi f L \\
& X_{C}=\frac{1}{\omega C}=\frac{1}{2 \pi f C} \\
& Z=\sqrt{\left(X_{L}-X_{C}\right)^{2}+R^{2}}
\end{aligned}
$$

Take the emf to be 20 for the purpose of plotting a nice curve. Here y is the voltage and x is the frequency.

$$
y=\frac{20.0}{\sqrt{\left(10^{2}+\left(x \cdot 0.5-\frac{1}{x \cdot 1 \mathrm{E}-6}\right)^{2}\right)}}
$$

3. A Square loop with side 1 m contains a single turn of wire. It is placed so that the center of the square is at the origin. Compute the magnetic field at a point $(0,0,1 \mathrm{~m})$. Take the current to be 5 Amps and flowing in the counterclockwise direction as viewed from above.

The field can be computed by finding the z component due to just one of the four segments and then multiplying by 4 . By symmetry, only the z component survives. We begin by computing the field using Biot-Savart for the right wire shown above. First, write out all the pieces we need.

$$
\begin{aligned}
& d \vec{l}=d x \hat{i} \\
& \vec{r}=(0-x) \hat{i}+\left(0-\frac{l}{2}\right) \hat{j}+(z-0) \hat{k} \\
& r=\sqrt{(0-x)^{2}+\left(0-\frac{l}{2}\right)^{2}+(z-0)^{2}} \\
& \hat{r}=\frac{-x \hat{i}-\frac{l}{2} \hat{j}+z \hat{k}}{\sqrt{x^{2}+\left(\frac{l}{2}\right)^{2}+z^{2}}}
\end{aligned}
$$

Note that the right wire is at $\mathrm{y}=1 / 2$. The direction of the current will be given by the order of integration (from $x=+1 / 2$ to $x=-1 / 2$).

Now substitute in

$$
\begin{aligned}
\vec{B} & =\frac{\mu_{0}}{4 \pi} \int_{l / 2}^{-l / 2} \frac{i d \vec{l} \times \hat{r}}{r^{2}} \\
& =\frac{\mu_{0}}{4 \pi} \int_{l / 2}^{-l / 2} \frac{i(d x \hat{i}) \times\left(\frac{-x \hat{i}-\frac{l}{2} \hat{j}+z \hat{k}}{\sqrt{x^{2}+\left(\frac{l}{2}\right)^{2}+z^{2}}}\right)}{x^{2}+\left(\frac{l}{2}\right)^{2}+z^{2}} \\
& =\frac{\mu_{0}}{4 \pi} \int_{l / 2}^{-l / 2} \frac{i(d x \hat{i}) \times\left(-x \hat{i}-\frac{l}{2} \hat{j}+z \hat{k}\right)}{\left(x^{2}+\left(\frac{l}{2}\right)^{2}+z^{2}\right)^{3 / 2}}
\end{aligned}
$$

We now pick out just the z component (from ixj)

$$
\begin{aligned}
B & =\frac{\mu_{0}}{4 \pi} \int_{l / 2}^{-l / 2} \frac{i(d x \hat{i}) \times\left(-x \hat{i}-\frac{l}{2} \hat{j}+z \hat{k}\right)}{\left(x^{2}+\left(\frac{l}{2}\right)^{2}+z^{2}\right)^{3 / 2}} \\
B_{z} & =\frac{\mu_{0} i}{4 \pi} \int_{l / 2}^{-l / 2} \frac{\left(-\frac{l}{2} d x \hat{k}\right)}{\left(x^{2}+\left(\frac{l}{2}\right)^{2}+z^{2}\right)^{3 / 2}} \\
& =-\frac{\mu_{0} l^{-l / 2}}{8 \pi} \int_{l / 2}^{2} \frac{d x}{\left(x^{2}+\left(\frac{l}{2}\right)^{2}+z^{2}\right)^{3 / 2}} \\
& =\frac{\mu_{0} i l}{8 \pi} \cdot \frac{8 l \sqrt{\left(\frac{l}{2}\right)^{2}+z^{2}}}{\left(l^{2}+2 z^{2}\right) \cdot\left(l^{2}+4 z^{2}\right)}
\end{aligned}
$$

Note: Mathematica did the integral! The result for the full loop is 4 x this result.

$$
\begin{aligned}
B_{z} & =4 \cdot \frac{\mu_{0} i l}{8 \pi} \cdot \frac{8 l \sqrt{\left(\frac{l}{2}\right)^{2}+z^{2}}}{\left(l^{2}+2 z^{2}\right) \cdot\left(l^{2}+4 z^{2}\right)} \\
& =\frac{\mu_{0} i l}{2 \pi} \cdot \frac{8 l \sqrt{\left(\frac{l}{2}\right)^{2}+z^{2}}}{\left(l^{2}+2 z^{2}\right) \cdot\left(l^{2}+4 z^{2}\right)}
\end{aligned}
$$

4. A circular loop with radius a is centered at the origin. Find the magnetic field at a point $(0,0, z)$. You may assume a current I in the clockwise direction.

We begin by writing 1 , the position of a little bit of current. This will allow us to find dl.

$$
\begin{aligned}
& \vec{l}=x^{\prime} \hat{i}+y^{\prime} \hat{j}=a \cos \theta \hat{i}+a \sin \theta \hat{j} \\
& \frac{d \vec{l}}{d \theta}=-a \sin \theta \hat{i}+a \cos \theta \hat{j} \\
& d \vec{l}=(-a \sin \theta \hat{i}+a \cos \theta \hat{j}) d \theta
\end{aligned}
$$

Here the angle theta is measured from the x axis, as usual. The primed coordinates are the coordinates of the wire. Now find the other pieces to plug into the Biot-Savaart law...

$$
\begin{aligned}
\vec{r} & =\left(0-x^{\prime}\right) \hat{i}+\left(0-y^{\prime}\right) \hat{j}+(z-0) \hat{k} \\
& =-a \cos \theta \hat{i}-a \sin \theta \hat{j}+z \hat{k} \\
r & =\sqrt{(-a \cos \theta)^{2}+(a \sin \theta)^{2}+z^{2}}=\sqrt{a^{2}+z^{2}} \\
\hat{r} & =\frac{-a \cos \theta \hat{i}-a \sin \theta \hat{j}+z \hat{k}}{\sqrt{a^{2}+z^{2}}}
\end{aligned}
$$

and substitute

$$
\begin{aligned}
\vec{B} & =\frac{\mu_{0}}{4 \pi} \int_{0}^{2 \pi} \frac{i d \vec{l} \times \hat{r}}{r^{2}}= \\
& =\frac{\mu_{0} i}{4 \pi} \int_{0}^{2 \pi} \frac{(-a \sin \theta \hat{i}+a \cos \theta \hat{j}) \times \frac{-a \cos \theta \hat{i}-a \sin \theta \hat{j}+z \hat{k}}{\sqrt{a^{2}+z^{2}}}}{a^{2}+z^{2}} d \theta \\
& =\frac{\mu_{0} i}{4 \pi} \int_{0}^{2 \pi} \frac{(-a \sin \theta \hat{i}+a \cos \theta \hat{j}) \times(-a \cos \theta \hat{i}-a \sin \theta \hat{j}+z \hat{k})}{\left(a^{2}+z^{2}\right)^{3 / 2}} d \theta \\
& =\frac{\mu_{0} i}{4 \pi} \int_{0}^{2 \pi} \frac{a^{2} \hat{k}+a z \cos \theta \hat{i}+a z \sin \theta \hat{j}}{\left(a^{2}+z^{2}\right)^{3 / 2}} d \theta \\
B_{x} & =\frac{\mu_{0} i a z}{4 \pi\left(a^{2}+z^{2}\right)^{3 / 2}} \int_{0}^{2 \pi} \cos \theta d \theta=0 \\
B_{y} & =\frac{\mu_{0} i a z}{4 \pi\left(a^{2}+z^{2}\right)^{3 / 2}} \int_{\pi / 2}^{2 \pi} \sin \theta d \theta=0 \\
B_{z} & =\frac{\mu_{0} i a^{2}}{4 \pi\left(a^{2}+z^{2}\right)^{3 / 2}} \int_{0}^{0} d \theta=\frac{\mu_{0} i a^{2}}{2\left(a^{2}+z^{2}\right)^{3 / 2}}
\end{aligned}
$$

Note that the directions match what we would expect from the right hand rule...

