Sample Exam 4

Short Answer

1. A metal bar of length 1 m travels through a perpendicular B field with magnitude 1 T . How fast would the bar need to go to develop an emf of 1 V across its ends.
2. A uniform magnetic field passes through a square loop of wire with 5 turns. The loop has side 0.1 m and is oriented at 30 degrees with respect to the field. What is the flux through the wire? If the field drops from 5 T to 4 T in 1 minute, what emf will develop and in what direction will it point.
3. A cylindrical solenoid is 0.5 m long and has 50 turns per cm . What field is present if 1 amp flows through the wire? (Hint: Calculate using Ampere's Law). What is the energy density?
4. Compute the inductance of the solenoid in SA 3.
5. A 100 mH inductor has a current given by $\mathrm{i}=2 \mathrm{t}^{2}+3 \mathrm{t}+4$. What voltage develops across the inductor at $\mathrm{t}=3 \mathrm{sec}$.
6. Write Maxwell's equations and briefly explain each equation.
7. Describe the underdamped, critically damped, and overdamped solutions of the RLC circuit.
8. An emf with frequency 60 Hz and $V_{0}=300$ drives a circuit with resistance 100 Ohms and inductance 0.5 H . What are the RMS voltage, the inductive reactance X_{L}, the impedance Z , and the maximum and RMS current.
9. An incoming radio wave has a frequency f of 780 Khz . If the inductor in an LC circuit is 100 mH , what should the capacitance be set to to tune this radio to this frequency.
10. Derive the expression for the magnitude of the magnetic field at a distance r from a long straight wire.
11. A current of 10 A is distributed uniformly across a beam with a radius a. Find the magnetic field at a distance r from the center of the beam. Consider both $r<a$ and $r>a$.

Problems.

1. A magnetic field is given by

$$
B=B_{0} \cos \omega t
$$

Note that the magnitude of B changes, but not its direction. A circular loop is placed in this field and oriented at an angle θ
a. What is the magnetic flux through the loop?
b. What emf is induced? Draw a picture to indicate the direction of the induced current
c. What angle leads to the maximum induced emf?
d. Assume that θ is now 0 . What electric field is present at the radius of the wire?
2. A circular parallel plate capacitor with radius R and separation d in an RC circuit discharges via the equation

$$
q=q_{0} e^{-t / R C}
$$

a. What is the electric field as a function of time?
b. What is the displacement current at $\mathrm{R} / 2$ and R ?
c. What is the induced B at at $R / 2$ and R ?
3. Consider an RLC circuit with $\mathrm{R}=10 \mathrm{Ohms}, \mathrm{L}=500 \mathrm{mH}$ and $\mathrm{C}=1$ microF.
a. Write the differential equation that describes this circuit by using Kirchoff's voltage loop rule. What is the natural osc. frequency?
b. Now consider driving this circuit. What are $\mathrm{X}_{\mathrm{L}}, \mathrm{X}_{\mathrm{C}}$, and Z for this circuit? Sketch the amplitude of the voltage across the capacitor as a function of the frequency.
4. A Square loop with side 1 m contains a single turn of wire. It is placed so that the center of the square is at the origin. Compute the magnetic field at a point $(0,0,1 \mathrm{~m})$. Take the current to be 5 Amps and flowing in the counterclockwise direction as viewed from above.

4. A circular loop with radius a is centered at the origin as below. Find the magnetic field at a point $(0,0, \mathrm{z})$. You may assume a current I in the clockwise direction.

