## Sample Exam 1

## Physics 132

1. Compute the size of the charge necessary for two spheres separated by 1 m to be attracted with a force of 1 N . How many electrons is this charge?
2. What is the electric field on the surface of a Uranium nucleus. Take the nucleus to be a uniformly charged sphere with a charge of +92 e and radius 10 fm .
3. How may electrons pass per second if a current of 10 A flows in a wire?
4. A proton and an electron are separated by a distance of 1Angstrom. What is the dipole moment of this system? What torque would this dipole experience if it was placed in a uniform electric field of $1000 \mathrm{~N} / \mathrm{C}$ at an angle of 30 degrees with respect to the field?
5. The electric field at a certain point is $100 \mathrm{~N} / \mathrm{C}$. What force would a 10 C charge feel at that point?
6. What is the electric field inside a conductor and why?
7. A cube encloses an electric dipole with $\mathrm{p}=10 \times 10^{-9} \mathrm{Cm}$. What is the net flux through the surface of the cube? You may assume that the dipole is at the center.
8. A point charge +q is placed inside a conducting spherical shell with inner radius a and outer radius $b$. What is the total charge on the inner surface and why? What is the charge on the outer surface and why? Sketch the field as a function of r .
9. A closed cylindrical surface is placed in an electric field that points along its axis. The cylinder is 1 m long and has a radius of 0.3 m . The field has a strength of $10 \mathrm{~N} / \mathrm{C}$ on one of the endcaps and has a strength of $30 \mathrm{~N} / \mathrm{C}$ on the other. What is the net electric flux and what net charge is contained in the surface?

10. An electron is placed at the center of a cube. What is the electric flux through one side of the cube?

## Problems.

1. Charges $+q,+2 q$ and $+3 q$ are placed at the edges of an equilateral triangle with side $a$. The $+q$ is placed on the origin, the $+2 q$ is at $x=a, y=0$, and the $+3 q$ is placed at the remaining corner

a) Compute the electric field vector for a point at the center of the triangle.
b) What force would a charge -q experience at that point?
c) Make a sketch of the field.
2. A ring of radius a with charge per unit length $I_{a}$ lies in the $x-y$ plane. A second ring with radius $b$ lies in the same plane with charge per unit length $I_{b}$.

a) Find an expression for the electric field due to the ring with radius a for a point at a distance $z$ away from the $x-y$ plane.
b) What is the expression for the total field due to both rings at a point z above the $\mathrm{x}-\mathrm{y}$ plane?
c) What relationship between the charge densities would give zero field at the point z above the plane? Is there a point on the z axis that has zero field no matter what the charge densities are?
3. A nonconducting sphere has a uniform charge density of $1 \mathrm{C} / \mathrm{m}^{3}$ and a radius of 0.1 m
a) What is the total charge on the sphere?
b) What is the electric field at a distance of 1 m away from the sphere's center.

Now consider a Gaussian surface inside the sphere. Assume the Gaussian surface is a sphere of radius $r$ where $r$ is less than 0.1 m .
c) What is the charge contained in the Gaussian surface?
d) What is the net electric flux as written in terms of the field E?
e) What is the electric field at a distance $r$ away from the center, where $r$ is less than 0.1 m .

