Exam 1

Physics 132

Short Answer Section. Please answer all of the questions.

1. 2. What magnitude force do the "up" quarks and "down" quarks in a proton exert on each other? Assume that the "up" quark has charge $q=+\frac{2}{3} e$ and the "down" quark has a charge $q=-\frac{1}{3} e$. The separation of the quarks is $0.5 \times 10^{-15} \mathrm{~m}$. Is the force attractive or repulsive?
1. What is the electric field at the location (x, y) shown below? Hint: You will need to write out \vec{r}, r, \hat{r} for each charge.

2. What is the electric field inside a conductor and why?
3. A particle experiences an acceleration of $2.0 \times 10^{6} \mathrm{~m} / \mathrm{s}^{2}$. If the particle's charge is $q=2.0 \times 10^{-6} \mathrm{~m} / \mathrm{s}^{2}$ and its mass is $m=1.0 \times 10^{-8} \mathrm{~kg}$, what electric field caused this acceleration?
4. A positive point charge charge +10 e is placed at the center of a cube. What is the electric flux through the right face of the cube?
5. Using Gauss' law, show that the field due to an infinite plane of charge is $E=\frac{\sigma}{2 \varepsilon_{0}}$ where σ. Use the Gaussian Surface shown below.

6. A uniformly charged sphere has a charge density ρ and radius a. How much charge is enclosed by a Gaussian surface of radius r where $r<a$?

7. A dipole is composed of a charge +e and -e separated by a distance $d=0.5 \times 10^{-10} \mathrm{~m}$. What is the electric dipole moment p of this dipole? If it is oriented at an angle $\theta=60^{\circ}$ with respect to a uniform electric field E , what is the energy U of the dipole?
8. In a beam, 100×10^{9} particles by per second. If each particle has a charge of $10 \times 10^{-12} \mathrm{C}$ what is the current of the beam?

Problems: Please work 2 of the $\mathbf{3}$ problems.

1. Consider a line of charge along the y axis as shown below and the field at a point ($\mathrm{x}^{\prime}, \mathrm{y}^{\prime}$)

a) Write dq for a little length of charge shown.
b) Write the r, \vec{r}, \hat{r} for the charge dq .
c) Set up the integral to calculate both the x and y components of the Electric Field but do not do the the integrals.
2. Consider the two have circles of charge below or charge below. One half circle has radius a and charge per unit length λ_{a} and the second has radius b charge per unit length λ_{b}. A little charge dq produces a dE as shown from the left half circle. You may assume that both charge densities are positive.

Consider just the left half circle with radius a first.

a) What direction will the field point after integrating?
b) Write dq for a little arc length of charge? Write the arc length in terms of the radius a and an angle $d \theta$?
c) Write the magnitude of dE that is produced by dq?
d) Write the component of dE that will survive in terms of $\cos \theta$
e) Integrate θ from $-\pi / 2$ to $+\pi / 2$ to find the field. Remember that

$$
\int_{-\pi / 2}^{\pi / 2} \cos d \theta=\left.\sin \theta\right|_{-\pi / 2} ^{\pi / 2}=\sin \frac{\pi}{2}-\sin \left(-\frac{\pi}{2}\right)=2
$$

f) Now knowing the field due to the left half circle, what is the field due to both half circles. Hint: You can just write the field due to the right half circle down with appropriate substitution and then add the fields together as appropriate.

Bonus) What is the relationship between λ_{a} and λ_{b} such that the field is zero?
3. Consider the nonconducting infinite cylindrical shell shown below . It has inner radius a and outer radius b. You may assume uniform charge density ρ.

a) What is the field for radii less than a and why?

Choose a Gaussian surface for $\mathbf{a}<\mathbf{r}<\boldsymbol{b}$.
b) What is the charge enclosed by this surface? (Hint: The volume of a cylinder is at the end of the exam. Don't forget to subtract the hole).
c) Use Gauss' Law to find the electric field for $\mathbf{a}<\mathbf{r}<\mathbf{b}$.

Choose a Gaussian surface for $\mathbf{r}>\boldsymbol{b}$.

d) What is the charge enclosed in this surface? (Hint: The volume of a cylinder is at the end of the exam. Don't forget to subtract the hole).
e) Use Gauss' Law to find the field for $\mathbf{r}>\mathbf{b}$..

Some useful formulae
Charge on the proton: $\quad+1.6 \times 10^{-19} \mathrm{C}$
Charge on the electron $\quad-1.6 \times 10^{-19} \mathrm{C}$
$\varepsilon_{0}=8.85 \times 10^{-12} \frac{\mathrm{C}^{2}}{\mathrm{~N} \mathrm{~m}^{2}}$

Surface area of a sphere: $\quad A=4 \pi r^{2}$
Surface area of cylinder: $\quad A=2 \pi a L+2 \pi a^{2}$
Volume of a sphere: $\quad V=\frac{4}{3} \pi r^{3}$
Volume of a cylinder: $\quad V=\pi a^{2} L$

