Exam 1 Physics 132

Short Answer Section. Please answer all of the questions.

- 1. 1. What magnitude force do the "up" quarks and "down" quarks in a proton exert on each other? Assume that the "up" quark has charge $q = +\frac{2}{3}e$ and the "down" quark has a charge $q = -\frac{1}{3}e$. The separation of the quarks is $0.5 \times 10^{-15} m$. Is the force attractive or repulsive?
- **2.** What is the electric field at the location (x, y) shown below? Hint: You will need to write out \vec{r}, r, \hat{r} for each charge.

- **3.** What is the electric field inside a conductor and why?
- **4.** A particle experiences an acceleration of $2.0 \times 10^6 m/s^2$. If the particle's charge is $q = 2.0 \times 10^{-6} m/s^2$ and its mass is $m = 1.0 \times 10^{-8} kg$, what electric field caused this acceleration?
- **5.** A positive point charge charge +10e is placed at the center of a cube. What is the electric flux through the right face of the cube?

6. Using Gauss' law, show that the field due to an infinite plane of charge is $E = \frac{\sigma}{2\varepsilon_0}$ where σ .

Use the Gaussian Surface shown below.

7. A uniformly charged sphere has a charge density ρ and radius a. How much charge is enclosed by a Gaussian surface of radius r where r< a?

- **8**. A dipole is composed of a charge +e and -e separated by a distance $d = 0.5 \times 10^{-10} \, m$. What is the electric dipole moment p of this dipole? If it is oriented at an angle $\theta = 60^{\circ}$ with respect to a uniform electric field E, what is the energy U of the dipole?
- **9.** In a beam, 100×10^9 particles by per second. If each particle has a charge of $10 \times 10^{-12} C$ what is the current of the beam?

Problems: Please work 2 of the 3 problems.

1. Consider a line of charge along the y axis as shown below and the field at a point (x', y')

- a) Write dq for a little length of charge shown.
- **b)** Write the r, \vec{r} , \hat{r} for the charge dq.
- c) Set up the integral to calculate both the x and y components of the Electric Field but $\underline{\mathbf{do}\ \mathbf{not}}$ $\underline{\mathbf{do}\ \mathbf{the}\ \mathbf{the}\ \mathbf{integrals.}}$

2. Consider the two have circles of charge below or charge below. One half circle has radius a and charge per unit length λ_a and the second has radius b charge per unit length λ_b . A little charge dq produces a dE as shown from the left half circle. You may assume that both charge densities are positive.

Consider just the left half circle with radius a first.

- a) What direction will the field point after integrating?
- **b)** Write dq for a little arc length of charge? Write the arc length in terms of the radius a and an angle $d\theta$?
- c) Write the magnitude of dE that is produced by dq?
- **d)** Write the component of dE that will survive in terms of $\cos \theta$
- e) Integrate θ from $-\pi/2$ to $+\pi/2$ to find the field. Remember that

$$\int_{-\pi/2}^{\pi/2} \cos d\theta = \sin \theta \Big|_{-\pi/2}^{\pi/2} = \sin \frac{\pi}{2} - \sin \left(-\frac{\pi}{2} \right) = 2$$

f) Now knowing the field due to the left half circle, what is the field due to both half circles. Hint: You can just write the field due to the right half circle down with appropriate substitution and then add the fields together as appropriate.

Bonus) What is the relationship between λ_a and λ_b such that the field is zero?

3. Consider the **nonconducting** infinite cylindrical shell shown below . It has inner radius a and outer radius b. You may assume uniform charge density ρ .

a) What is the field for radii less than a and why?

Choose a Gaussian surface for a < r < b.

- **b)** What is the charge enclosed by this surface? (Hint: The volume of a cylinder is at the end of the exam. Don't forget to subtract the hole).
- c) Use Gauss' Law to find the electric field for a < r < b.

Choose a Gaussian surface for r > b.

- **d**) What is the charge enclosed in this surface? (Hint: The volume of a cylinder is at the end of the exam. Don't forget to subtract the hole).
- e) Use Gauss' Law to find the field for r > b..

Some useful formulae

Charge on the proton:
$$+1.6 \times 10^{-19} C$$

Charge on the electron $-1.6 \times 10^{-19} C$

$$\varepsilon_0 = 8.85 \times 10^{-12} \frac{\text{C}^2}{\text{N m}^2}$$

Surface area of a sphere:
$$A = 4\pi r^2$$

Surface area of cylinder:
$$A = 2\pi a L + 2\pi a^2$$

Volume of a sphere:
$$V = \frac{4}{3}\pi r^3$$

Volume of a cylinder:
$$V = \pi a^2 L$$